Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation.

نویسندگان

  • Feng Wang
  • Xiaogang Liu
چکیده

Lanthanide-doped nanoparticles exhibit unique luminescent properties, including large Stokes shift, sharp emission bandwidth, high resistance to optical blinking, and photobleaching, as well as the unique ability to convert long-wavelength stimulation into short-wavelength emission. These attributes are particularly needed for developing luminescent labels as alternatives to organic fluorophores and quantum dots. In recent years, the well-recognized advantages of upconversion nanocrystals as biomarkers have been manifested in many important applications, such as highly sensitive molecular detection and autofluorescence-free cell imaging. However, their potential in multiplexed detection and multicolor imaging is rarely exploited, largely owing to the research lagging on multicolor tuning of these particles. Lanthanide doping typically involves an insulating host matrix and a trace amount of lanthanide dopants embedded in the host lattice. The luminescence observed from these doped crystalline materials primarily originates from electronic transitions within the [Xe]4f(n) configuration of the lanthanide dopants. Thus a straightforward approach to tuning the emission is to dope different lanthanide activators in the host lattice. Meanwhile, the host lattice can exert a crystal field around the lanthanide dopants and sometimes may even exchange energy with the dopants. Therefore, the emission can also be modulated by varying the host materials. Recently, the advance in synthetic methods toward high quality core-shell nanocrystals has led to the emergence of new strategies for emission modulation. These strategies rely on precise control over either energy exchange interactions between the dopants or energy transfer involving other optical entities. To provide a set of criteria for future work in this field, we attempt to review general and emerging strategies for tuning emission spectra through lanthanide doping. With significant progress made over the past several years, we now are able to design and fabricate nanoparticles displaying tailorable optical properties. In particular, we show that, by rational control of different combinations of dopants and dopant concentration, a wealth of color output can be generated under single-wavelength excitation. Strikingly, unprecedented single-band emissions can be obtained by careful selection of host matrices. By incorporating a set of lanthanide ions at defined concentrations into different layers of a core-shell structure, the emission spectra of the particles are largely expanded to cover almost the entire visible region, which is hardly accessible by conventional bulk phosphors. Importantly, we demonstrate that an inert-shell coating provides the particles with stable emission against perturbation in surrounding environments, paving the way for their applications in the context of biological networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles.

A general approach to fine-tuning the upconversion emission colors, based upon a single host source of NaYF4 nanoparticles doped with Yb3+, Tm3+, and Er3+, is presented. The emission intensity balance can be precisely controlled using different host-activator systems and dopant concentrations. The approach allows access to a wide range of luminescence emission from visible to near-infrared by s...

متن کامل

Lanthanide-doped LiYF4 nanoparticles: Synthesis and multicolor upconversion tuning

We report the synthesis of tetragonal-phase LiYF4 nanoparticles doped with upconverting lanthanide ions. The nanoparticles have been characterized by XRD, TEM, and luminescence decay studies. The size of the as-synthesized LiYF4 nanoparticles can be tuned by varying the precursor ratio of F to lanthanide ions. Passivated by oleic acid ligands, the LiYF4 nanoparticles can be readily dispersed in...

متن کامل

Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission.

Nanoparticles doped with lanthanide ions exhibit stable and visible luminescence under near-infrared excitation via a process known as upconversion, enabling long-duration, low-background biological imaging. However, the complex, overlapping emission spectra of lanthanide ions can hinder the quantitative imaging of samples labeled with multiple upconverting probes. Here, we use combinatorial sc...

متن کامل

Realizing up-conversion fluorescence tuning in lanthanide-doped nanocrystals by femtosecond pulse shaping method

The ability to tune color output of nanomaterials is very important for their applications in laser, optoelectronic device, color display and multiplexed biolabeling. Here we first propose a femtosecond pulse shaping technique to realize the up-conversion fluorescence tuning in lanthanide-doped nanocrystals dispersed in the glass. The multiple subpulse formation by a square phase modulation can...

متن کامل

Multicolor output and shape controlled synthesis of lanthanide-ion doped fluorides upconversion nanoparticles.

A general and facile approach for tailoring the multicolor output and shapes of lanthanide-ion doped fluoride upconversion nanoparticles (UCNPs) within a given composition is presented. By adjusting the temperature and time in the thermolysis procedure, the color output and shapes of NaYF(4):20%Yb, 2%Er UCNPs can be readily manipulated. The nanoparticles were characterized through the use of tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Accounts of chemical research

دوره 47 4  شماره 

صفحات  -

تاریخ انتشار 2014